Machine learning vs. Deep learning vs. Artificial intelligence
Machine learning vs. Deep learning vs. Artificial intelligence:
Artificial intelligence is the use of computers to imitate the cognitive functions of human, when machines do tasks based on algorithms in an intelligent state.
Machine learning is a subset of AI and focuses on the ability of machines to receive a set of data and learn for themselves, changing algorithms as they learn more about the information they are processing.
Training computers to think like humans is achieved partly through the use of neural networks. Neural networks are a series of algorithms modeled after the human brain. Just like the human brain can recognize patterns and help us categorize and classify information, neural networks do the same for computer systems. When we face something new, we try to compare it to a known item or pattern to help us understand and make sense of it; Neural networks do the same for computers.
Deep learning is another level deeper and can be considered a subset of machine learning. The concept of deep learning is sometimes just referred to as “deep neural networks”, referring to the many layers involved. A neural network may only have a single layer of data, while a deep neural network has two or more. The layers can be seen as a nested hierarchy of related concepts or decision trees. The answer to one question leads to a set of deeper related questions.
Deep learning networks need to see large quantities of items in order to be trained. Instead of being programmed with the edges that define items, the systems learn from exposure to millions of data points. An early example of this is the Google Brain learning to recognize cats after being shown over ten million images. Deep learning networks do not need to be programmed with the criteria that define items; they are able to identify edges through being exposed to large amounts of data.
Now we focus on machine learning:
Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence(AI) based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.
Most researchers also think it is the best way to make progress towards human-level AI
The name Machine learning was named in 1959 by Arthur Samuel. Evolved from the study of pattern recognition and computational learning theory in artificial intelligence machine learning explores the study and construction of algorithms that can learn from and make predictions on data – such algorithms overcome following strictly static program instructions by making data-driven predictions or decisions, through building a model from sample inputs. Machine learning is employed in a range of computing tasks where designing and programming explicit algorithms with good performance is difficult or infeasible; example applications include email filtering, detection of network intruders or malicious insiders working towards a data breach, optical character recognition (OCR), learning to rank, and computer vision.
Machine learning is closely related to (and often overlaps with) computational statistics, which also focuses on prediction-making through the use of computers. It has strong ties to mathematical optimization, which delivers methods, theory and application domains to the field. Machine learning is sometimes conflated with data mining, where the latter subfield focuses more on exploratory data analysis and is known as unsupervised learning. Machine learning can also be unsupervised and be used to learn and establish baseline behavioral profiles for various entities and then used to find meaningful anomalies.
Within the field of data analytics, machine learning is a method used to devise complex models and algorithms that lend themselves to prediction; in commercial use, this is known as predictive analytics. These analytical models allow researchers, data scientists, engineers, and analysts to “produce reliable, repeatable decisions and results” and uncover “hidden insights” through learning from historical relationships and trends in the data.
Effective machine learning is difficult because finding patterns is hard and often not enough training data are available; as a result, machine-learning programs often fail to deliver.
Machine learning is insisting of datamining, and statistical pattern recognition, Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). It is necessary to learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database
Most popular languages for machine learning:
To know what are the most popular languages for machine learning, we can study percentage of machine learning job postings
Top 8 programming languages for machine learning:
1 – Python
2 – Java
3 – R
4 – C
5 – C++
6 – JavaScript
7 – Scala
8 – c#
Machine learning programming languages market share chart:
Machine learning approaches (List of machine learning algorithms by Wikipedia)
1 – Decision tree learning
Decision tree learning uses a decision tree as a predictive model, which maps observations about an item to conclusions about the item’s target value.
2 – Association rule learning
Association rule learning is a method for discovering interesting relations between variables in large databases.
3 – Artificial neural networks
An artificial neural network (ANN) learning algorithm, usually called “neural network” (NN), is a learning algorithm that is vaguely inspired by biological neural networks. Computations are structured in terms of an interconnected group of artificial neurons, processing information using a connectionist approach to computation. Modern neural networks are non-linear statistical data modeling tools. They are usually used to model complex relationships between inputs and outputs, to find patterns in data, or to capture the statistical structure in an unknown joint probability distribution between observed variables.
4 – Deep learning
Falling hardware prices and the development of GPUs for personal use in the last few years have contributed to the development of the concept of deep learning which consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain processes light and sound into vision and hearing. Some successful applications of deep learning are computer vision and speech recognition.
5 – Inductive logic programming
Inductive logic programming (ILP) is an approach to rule learning using logic programming as a uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesized logic program that entails all positive and no negative examples. Inductive programming is a related field that considers any kind of programming languages for representing hypotheses (and not only logic programming), such as functional programs.
6 – Support vector machines
Support vector machines (SVMs) are a set of related supervised learning methods used for classification and regression. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other.
7 – Clustering
Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that observations within the same cluster are similar according to some predesignated criterion or criteria, while observations drawn from different clusters are dissimilar. Different clustering techniques make different assumptions on the structure of the data, often defined by some similarity metric and evaluated for example by internal compactness (similarity between members of the same cluster) and separation between different clusters. Other methods are based on estimated density and graph connectivity. Clustering is a method of unsupervised learning, and a common technique for statistical data analysis.
8 – Bayesian networks
A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical model that represents a set of random variables and their conditional independencies via a directed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms exist that perform inference and learning.
9 – Reinforcement learning
Reinforcement learning is concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. Reinforcement learning algorithms attempt to find a policy that maps states of the world to the actions the agent ought to take in those states. Reinforcement learning differs from the supervised learning problem in that correct input/output pairs are never presented, nor sub-optimal actions explicitly corrected.
10 – Representation learning
Several learning algorithms, mostly unsupervised learning algorithms, aim at discovering better representations of the inputs provided during training. Classical examples include principal components analysis and cluster analysis. Representation learning algorithms often attempt to preserve the information in their input but transform it in a way that makes it useful, often as a pre-processing step before performing classification or predictions, allowing reconstruction of the inputs coming from the unknown data generating distribution, while not being necessarily faithful for configurations that are implausible under that distribution.
Manifold learning algorithms attempt to do so under the constraint that the learned representation is low-dimensional. Sparse coding algorithms attempt to do so under the constraint that the learned representation is sparse (has many zeros). Multilinear subspace learning algorithms aim to learn low-dimensional representations directly from tensor representations for multidimensional data, without reshaping them into (high-dimensional) vectors. Deep learning algorithms discover multiple levels of representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or generating) lower-level features. It has been argued that an intelligent machine is one that learns a representation that disentangles the underlying factors of variation that explain the observed data.[30]
11 – Similarity and metric learning
In this problem, the learning machine is given pairs of examples that are considered similar and pairs of less similar objects. It then needs to learn a similarity function (or a distance metric function) that can predict if new objects are similar. It is sometimes used in Recommendation systems.
12 – Sparse dictionary learning
Sparse dictionary learning is a representation learning method which aims at finding a sparse representation of the input data (also known as sparse coding) in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed. The above two properties lead to having seemingly redundant atoms that allow multiple representations of the same signal but also provide an improvement in sparsity and flexibility of the representation.
13 – Genetic algorithms
A genetic algorithm (GA) is a search heuristic that mimics the process of natural selection, and uses methods such as mutation and crossover to generate new genotype in the hope of finding good solutions to a given problem. In machine learning, genetic algorithms found some uses in the 1980s and 1990s. Conversely, machine learning techniques have been used to improve the performance of genetic and evolutionary algorithms.
14 – Rule-based machine learning
Rule-based machine learning is a general term for any machine learning method that identifies, learns, or evolves ‘rules’ to store, manipulate or apply, knowledge. The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learners that commonly identify a singular model that can be universally applied to any instance in order to make a prediction. Rule-based machine learning approaches include learning classifier systems, association rule learning, and artificial immune systems.
15 – Learning classifier systems
Learning classifier systems (LCS) are a family of rule-based machine learning algorithms that combine a discovery component (e.g. typically a genetic algorithm) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). They seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions.
Now we can repeat the comparison from another view:
What is the difference between artificial intelligence and machine learning?
Artificial Intelligence (AI) and Machine Learning (ML) are two very hot buzzwords right now, and often seem to be used interchangeably.
They are not quite the same thing, but the perception that they are can sometimes lead to some confusion. So I thought it would be worth writing a piece to explain the difference.
Both terms crop up very frequently when the topic is Big Data, analytics, and the broader waves of technological change which are sweeping through our world.
In short, the best answer is that:
Artificial Intelligence is the broader concept of machines being able to carry out tasks in a way that we would consider “smart”.
And,
Machine Learning is a current application of AI based around the idea that we should really just be able to give machines access to data and let them learn for themselves[Forbes].
Recent Comments